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Abstract

Adversarial examples reveal the blind spots of deep neural networks (DNNs) and
represent a major concern for security-critical applications. The transferability
of adversarial examples makes real-world attacks possible in black-box settings,
where the attacker is forbidden to access the internal parameters of the model. The
underlying assumption in most adversary generation methods, whether learning
an instance-specific or an instance-agnostic perturbation, is the direct or indirect
reliance on the original domain-specific data distribution. In this work, for the first
time, we demonstrate the existence of domain-invariant adversaries, thereby show-
ing common adversarial space among different datasets and models. To this end,
we propose a framework capable of launching highly transferable attacks that crafts
adversarial patterns to mislead networks trained on entirely different domains. For
instance, an adversarial function learned on Paintings, Cartoons or Medical images
can successfully perturb ImageNet samples to fool the classifier, with success rates
as high as ∼99% (`∞ ≤ 10). The core of our proposed adversarial function is a
generative network that is trained using a relativistic supervisory signal that enables
domain-invariant perturbations. Our approach sets the new state-of-the-art for fool-
ing rates, both under the white-box and black-box scenarios. Furthermore, despite
being an instance-agnostic perturbation function, our attack outperforms the con-
ventionally much stronger instance-specific attack methods. Code is available at:
https://github.com/Muzammal-Naseer/Cross-domain-perturbations

1 Introduction

Albeit displaying remarkable performance across a range of tasks, Deep Neural Networks (DNNs)
are highly vulnerable to adversarial examples, which are carefully crafted examples generated by
adding a certain degree of noise (a.k.a. perturbations) to the corresponding original images, typically
appearing quasi-imperceptible to humans [1]. Importantly, these adversarial examples are transferable
from one network to another, even when the other network fashions a different architecture and
possibly trained on a different subset of training data [2, 3]. Transferability permits an adversarial
attack, without knowing the internals of the target network, posing serious security concerns on the
practical deployment of these models.

Adversarial perturbations are either instance-specific or instance-agnostic. The instance-specific
attacks iteratively optimize a perturbation pattern specific to an input sample (e.g., [4, 5, 6, 7, 8, 9,
10, 11]). In comparison, the instance-agnostic attacks learn a universal perturbation or a function
that finds adversarial patterns on a data distribution instead of a single sample. For example, [12]
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Figure 1: Transferable Generative Adversarial Perturbation: We demonstrate that common adversaries
exist across different image domains and introduce a highly transferable attack approach that carefully crafts
adversarial patterns to fool classifiers trained on totally different domains. Our generative scheme learns to
reconstruct adversaries on paintings or comics (left) that can successfully fool natural image classifiers with high
fooling rates at the inference time (right).

proposed universal adversarial perturbations that can fool a model on the majority of the source
dataset images. To reduce dependency on the input data samples, [13] maximizes layer activations of
the source network while [14] extracts deluding perturbations using class impressions relying on the
source label space. To enhance the transferability of instance-agnostic approaches, recent generative
models attempt to directly craft perturbations using an adversarially trained function [15, 16].

We observe that most prior works on crafting adversarial attacks suffer from two pivotal limitations
that restrict their transferability to real-world scenarios. (a) Existing attacks rely directly or indirectly
on the source (training) data, which hampers their transferability to other domains. From a practical
standpoint, source domain can be unknown, or the domain-specific data may be unavailable to the
attacker. Therefore, a true "black-box" attack must be able to fool learned models across different
target domains without ever being explicitly trained on those data domains. (b) Instance-agnostic
attacks, compared with their counterparts, are far more scalable to large datasets as they avoid
expensive per-instance iterative optimization. However, they demonstrate weaker transferability rates
than the instance-specific attacks. Consequently, the design of highly transferable instance-agnostic
attacks that also generalize across unseen domains is largely an unsolved problem.

In this work, we introduce ‘domain-agnostic’ generation of adversarial examples, with the aim of
relaxing the source data reliance assumption. In particular, we propose a flexible framework capable
of launching vastly transferable adversarial attacks, e.g., perturbations found on paintings, comics
or medical images are shown to trick natural image classifiers trained on ImageNet dataset with
high fooling rates. A distinguishing feature of our approach is the introduction of relativistic loss
that explicitly enforces learning of domain-invariant adversarial patterns. Our attack algorithm is
highly scalable to large-scale datasets since it learns a universal adversarial function that avoids
expensive iterative optimization from instance-specific attacks. While enjoying the efficient inference
time of instance-agnostic methods, our algorithm outperforms all existing attack methods (both
instance-specific and agnostic) by a significant margin (∼ 86.46% average increase in fooling rate
from naturally trained Inception-v3 to adversarially trained models in comparison to state-of-the-art
[10]) and sets the new state-of-the-art under both white-box and black-box settings. Figure 1 provides
an overview of our approach.

2 Related Work

Image-dependent Perturbations: Several approaches target creation of image-dependent perturba-
tions. [17] noticed that despite exhibiting impressive performance, neural networks can be fooled
through maliciously crafted perturbations that appear quasi-imperceptible to humans. Following this
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finding, many approaches [4, 5, 6, 7, 8, 9] investigate the existence of these perturbations. They either
apply gradient ascent in the pixel space or solve complex optimizations. Recently, a few methods
[18, 10] propose input or gradient transformation modules to improve the transferability of adversarial
examples. A common characteristic of the aforementioned approaches is their data-dependence; the
perturbations are computed for each data-point separately in a mutually exclusive way. Further, these
approaches render inefficiently at inference time since they iterate on the input multiple times. In
contrast, we resort to a data-independent approach based on a generator, demonstrating improved
inference-time efficiency along with high transferability rates.

Universal Adversarial Perturbation: Seminal work of [12] introduces the existence of Universal
Adversarial Perturbation (UAP). It is a single noise vector which when added to a data-point can
fool a pretrained model. [12] crafts UAP in an iterative fashion utilizing target data-points that is
capable of flipping their labels. Though it can generate image-agnostic UAP, the success ratio of
their attack is proportional to the number of training samples used for crafting UAP. [13] proposes
a so-called data-independent algorithm by maximizing the product of mean activations at multiple
layers given a universal perturbation as input. This method crafts a so-called data-independent
perturbation, however, the attack success ratio is not comparable to [12]. Instead, we propose a fully
distribution-agnostic approach that crafts adversarial examples directly from a learned generator, as
opposed to first generating perturbations followed by their addition to images.

Generator-oriented Perturbations: Another branch of attacks leverage generative models to craft
adversaries. [15] learns a generator network to perturb images, however, the unbounded perturbation
magnitude in their case might render perceptible perturbations at test time. [33] trains conditional
generators to learn original data manifold and searches the latent space conditioned on the human
recognizable target class that is mis-classified by a target classier. [19] apply generative adversarial
networks to craft visually realistic perturbations and build distilled network to perform black-box
attack. Similarly, [16, 14] train generators to create adversaries to launch attacks; the former uses
target data directly and the latter relies on class impressions.

A common trait of prior work is that they either rely directly (or indirectly) upon the data distribution
and/or entail access to its label space for creating adversarial examples (Table 1). In contrast, we
propose a flexible, distribution-agnostic approach - inculcating relativistic loss - to craft adversarial
examples that achieves state-of-the-art results both under white-box and black-box attack settings.

Method Data Type Transfer Label Cross-domain
Strength Agnostic Attack

FFF [13] Pretrained-net/data Low 3 7

AAA [14] Class Impressions Medium 7 7

UAP [12] ImageNet Low 7 7

GAP [16] ImageNet Medium 7 7

RHP [11] ImageNet Medium 7 7

Ours Arbitrary (Paintings, Comics, Medical scans etc.) High 3 3

Table 1: A comparison of different attack methods based on their dependency on data distribution and labels.

3 Cross-Domain Transferable Perturbations

Our proposed approach is based on a generative model that is trained using an adversarial mechanism.
Assume we have an input image xs belonging to a source domain Xs ∈ Rs. We aim to train
a universal function that learns to add a perturbation pattern δ on the source domain which can
successfully fool a network trained on source Xs as well as any target domain Xt ⊂ Rt when fed
with perturbed inputs x′t = xt + δ. Importantly, our training is only performed on the unlabelled
source domain dataset with ns samples: {xi

s}
ns
i=1 and the target domain is not used at all during

training. For brevity, in the following discussion, we will only refer the input and perturbed images
using x and x′ respectively and the domain will be clear from the context.

The proposed framework consists of a generator Gθ(x) and a discriminator Dψ(x) parameterized by
θ and ψ. In our case, we initialize discriminator with a pretrained network and the parameters ψ are
remained fixed while the Gθ is learned. The output of Gθ is scaled to have a fixed norm and it lies
within a bound; x′ = clip

(
min(x + ε,max(Gθ(x),x − ε))

)
. The perturbed images x′ as well as
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Figure 2: The proposed generative framework seeks to maximize the ‘fooling gap’ that helps in achieving very
high transferability rates across domains. The orange dashed line shows the flow of gradients, notably only the
generator is tuned in the whole pipeline to fool the pretrained discriminator.

the real images x are passed through the discriminator. The output of the discriminator denotes the
class probabilities Dψ(x,x′) ∈ [0, 1]c, where c is the number of classes. This is different from the
traditional GAN framework where a discriminator only estimate whether an input is real or fake. For
an adversarial attack, the goal is to fool a network on most examples by making minor changes to its
inputs, i.e.,

‖ δ ‖∞≤ ε, s.t., P
(
argmaxj(Dψ(x′)j) 6= argmaxj(Dψ(x)j)

)
> fr, (1)

where, fr is the fooling ratio, y is the ground-truth label for the example x and the predictions on
clean images x are given by, y = argmaxj(Dψ(x)j). Note that we do not necessarily require the
ground-truth labels of source domain images to craft a successful attack. In the case of adversarial
attacks based on a traditional GAN framework, the following objective is maximized for the generator
to achieve the maximal fooling rate:

θ∗ ← argmax
θ

CROSSENTROPY(Dψ(x′), 1y), (2)

where 1y is the one-hot encoded label vector for an input example x. The above objective seeks to
maximize the discriminator error on the perturbed images that are output from the generator network.

We argue that the objective given by Eq. 2 does not directly enforce transferability for the generated
perturbations δ. This is primarily due to the reason that the discriminator’s response for clean
examples is totally ignored in the conventional generative attacks. Here, inspired by the generative
adversarial network in [20], we propose a relativistic adversarial perturbation (RAP) generation
approach that explicitly takes in to account the discriminator’s predictions on clean images. Along-
side reducing the classifier’s confidence on perturbed images, the attack algorithm also forces the
discriminator to maintain a high confidence scores for the clean samples. The proposed relativistic
objective is given by:

θ∗ ← argmax
θ

CROSSENTROPY(Dψ(x′)−Dψ(x), 1y). (3)

The cross entropy loss would be higher when the perturbed image is scored significantly lower than
the clean image response for the ground-truth class i.e., Dψ(x′)y << Dψ(x)y. The discriminator
basically seeks to increase the ‘fooling gap’ (Dψ(x′)y −Dψ(x)y) between the true and perturbed
samples. Through such relative discrimination, we not only report better transferability rates across
networks trained on the same domain, but most importantly show excellent cross-domain transfer rates
for the instance-agnostic perturbations. We attribute this behaviour to the fact that once a perturbation
pattern is optimized using the proposed loss on a source distribution (e.g., paintings, cartoon images),
the generator learns a "contrastive" signal that is agnostic to the underlying distribution. As a result,
when the same perturbation pattern is applied to networks trained on totally different domain (e.g.,
natural images), it still achieves the state-of-the-art attack transferability rates. Table 2 shows the gain
in transferability when using relativistic cross-entropy (Eq. 3) in comparison to simple cross-entropy
loss (Eq. 2).

For an untargeted attack, the above mentioned objective in Eq. 2 and 3 suffices, however, for a
targeted adversarial attack, the prediction for the perturbed image must match a given target class y′
i.e., argmaxj(Dψ(x′)j) = y′ 6= y. For such a case, we employ the following loss function:

θ∗ ← argmin
θ

CROSSENTROPY(Dψ(x′), 1y′) + CROSSENTROPY(Dψ(x), 1y). (4)

The overall training scheme for the generative network is given in Algorithm 1.
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Algorithm 1 Generator Training for Relativistic Adversarial Perturbations
1: A pretrained classifier Dψ , arbitrary training data distribution X , perturbation budget ε, loss criteria L.
2: Randomly initialize generator network Gθ
3: repeat
4: Sample mini-batch of data from the training set.
5: Use the current state of the generator, Gθ , to generate unbounded adversaries.
6: Project adversaries, Gθ(x), within a valid perturbation budget to obtain x′ such that ‖x′ − x‖∞ ≤ ε.
7: Forward pass x′ to Dψ and compute loss given in Eq. (3)/Eq. (4) for targeted/untargeted attack.
8: Backward pass and update the generator, Gθ , parameters to maximize the loss.
9: until model convergence.
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Figure 3: Loss and gradients trend for CE andRCE loss functions. Results are reported with VGG16 network
on 100 random images for MI-FGSM attack. Trends are shown in log scale.

4 Gradient Perspective of Relativistic Cross-Entropy

Adversarial perturbations are crafted via loss function gradients. An effective loss function helps
in the generation of perturbations by back-propagating stronger gradients. Below, we show that
Relativistic Cross-Entropy (RCE) ensures this requisite and thus leads to better performance than
regular Cross-Entropy (CE) loss.

Suppose, the logit-space outputs from the discriminator (pretrained classifier) corresponding to
a clean image (x) and a perturbed image (x’) are denoted by a and a′, respectively. Then,
CE(a′, y)=− log

(
ea

′
y/
∑

k e
a′
k

)
is the cross-entropy loss for a perturbed input x′. For clarity, we

define p′y = ea
′
y/
∑

k e
a′
k . The derivative of p′y w.r.t a′i is ∂p′y/∂a

′
i = p′y([[i=y]]− p′i). Using chain

rule, the derivative of cross-entropy loss is given by:

∂CE
∂a′i

= p′i − [[i=y]]. (5)

For the relativistic loss formulated as RCE(a′,a, y)=− log
(
ea

′
y−ay/

∑
k e

a′
k−ak

)
, we define

ry=
(
ea

′
y−ay/

∑
k e

a′
k−ak

)
. The derivative of ry w.r.t a′i is ∂ry/∂a′i = ri([[i=y]] − ry). From

chain rule,RCE derivative w.r.t to a′i is given by:

∂RCE
∂a′i

= ri − [[i=y]]. (6)

In light of above relation,RCE has three important properties:

1. Comparing (Eq.5) with (Eq.6) shows thatRCE gradient is a function of ‘difference’ (a′y−ay)
as opposed to only scores a′y in CE loss. Thus, it measures the relative change in prediction
as an explicit objective during optimization.

2. RCE loss back-propagates larger gradients compared to CE , resulting in efficient training and
stronger adversaries (see Figure 3 for empirical evidence). Sketch Proof: We can factorize
the denominator in (Eq. 6) as follows: ∂RCE/∂a′i =

(
ea

′
y−ay/(ea

′
y−ay +

∑
k 6=y e

a′
k−ak)

)
−

[[i=y]]. Consider the fact that maximization ofRCE is only possible when e(a
′
y−ay) decreases
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and
∑

k 6=y e
(a′

k−ak) increases. Generally, ay � ak 6=y for the score generated by a pre-
trained model and a′y � a′k 6=y (here k denotes an incorrectly predicted class). Thus,
∂RCE/∂a′i > ∂CE/∂a′i since e(a

′
y−ay) < e(a

′
y) and

∑
k 6=y e

(a′
k−ak) >

∑
k 6=y e

(a′
k). In

simple words, the gradient strength ofRCE is higher than CE .

3. In case x is misclassified by F(·), the gradient strength ofRCE is still higher than CE (here
noise update with the CE loss will be weaker since adversary’s goal is already achieved i.e.,
x is misclassified).

Loss VGG-16 VGG-19 Squeeze-v1.1 Dense-121
Cross Entropy (CE) 79.21 78.96 69.32 66.45

Relativistic CE 86.95 85.88 77.81 75.21

Table 2: Effect of Relativistic loss on trans-
ferability in terms of fooling rate (%) on Im-
ageNet val-set. Generator is trained against
ResNet-152 on Paintings dataset.

5 Experiments

5.1 Rules of the Game

We report results using following three different attack settings in our experiments: (a) White-box.
Attacker has access to the original model (both architecture and parameters) and the training data
distribution. (b) Black-box. Attacker has access to a pretrained model on the same distribution but
without any knowledge of the target architecture and target data distribution. (c) Cross-domain
Black-box. Attacker has neither access to (any) pretrained model, nor to its label space and its
training data distribution. It then has to seek a transferable adversarial function that is learned from a
model pretrained on a possibly different distribution than the original. Hence, this setting is relatively
far more challenging than the plain black-box setting.

Perturbation Attack VGG-19 ResNet-50 Dense-121
Fool Rate (↑) Top-1 (↓) Fool Rate (↑) Top-1 (↓) Fool Rate (↑) Top-1 (↓)

l∞ ≤ 10

Gaussian Noise 23.59 64.65 18.06 70.74 17.05 70.30
Ours-Paintings 47.12 46.68 31.52 60.77 29.00 62.0
Ours-Comics 48.47 45.78 33.69 59.26 31.81 60.40
Ours-ChestX 40.81 50.11 22.00 67.72 20.53 67.63

l∞ ≤ 16

Gaussian Noise 33.80 57.92 25.76 66.07 23.30 66.70
Ours-Paintings 66.52 30.21 47.51 47.62 44.50 49.76
Ours-Comics 67.75 29.25 51.78 43.91 50.37 45.17
Ours-ChestX 62.14 33.95 34.49 58.6 31.81 59.75

l∞ ≤ 32

Gaussian Noise 61.07 35.48 47.21 48.40 39.90 54.37
Ours-Paintings 87.08 11.96 69.05 28.77 63.78 33.46
Ours-Comics 87.90 11.17 71.91 26.12 71.85 26.18
Ours-ChestX 88.12 10.92 62.17 34.85 59.49 36.98

Table 3: Cross-Domain Black-box: Untargeted attack success (%) in terms of fooling rate on ImageNet val-set.
Adversarial generators are trained against ChexNet on Paintings, Comics and ChestX datasets. Perturbation
budget, l∞ ≤ 10/16/32, is chosen as per the standard practice. Even without the knowledge of targeted model,
its label space and its training data distribution, the transferability rate is much higher than the Gaussian noise.

5.2 Experimental Settings

Generator Architecture. We chose ResNet architecture introduced in [21] as the generator network
Gθ; it consists of downsampling, residual and upsampling blocks. For training, we used Adam
optimizer [22] with a learning rate of 1e-4 and values of exponential decay rate for first and second
moments set to 0.5 and 0.999, respectively. Generators are learned against the four pretrained
ImageNet models including VGG-16, VGG-19 [23], Inception (Inc-v3) [24], ResNet-152 [25] and
ChexNet (which is a Dense-121 [26] network trained to diagnose pneumonia) [27].

Datasets. We consider the following datasets for generator training namely Paintings [28], Comics
[29], ImageNet and a subset of ChestX-ray (ChestX) [27]. There are approximately 80k samples in
Paintings, 50k in Comics, 1.2 million in ImageNet training set and 10k in ChestX.
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Bee Eater Cardoon Impala Anemone Fish Crane

Jigsaw Puzzle Jigsaw Puzzle Jigsaw Puzzle Jigsaw Puzzle Jigsaw Puzzle

Figure 4: Untargeted adversaries produced by generator trained against Inception-v3 on Paintings dataset. 1st
row shows original images while 2nd row shows unrestricted outputs of adversarial generator and 3rd row are
adversaries after valid projection. Perturbation budget is set to l∞ ≤ 10.

Figure 5: Illustration of attention shift. We use [31] to visualize attention maps of clean (1st row) and adversarial
(2nd row) images. Adversarial images are obtained by training generator against VGG-16 on Paintings dataset.

Inference: Inference is performed on ImageNet validation set (val-set) (50k samples), a subset (5k
samples) of ImageNet proposed by [11] and ImageNet-NeurIPS [30] (1k samples) dataset.

Evaluation Metrics: We use the fooling rate (percentage of input samples for which predicted label
is flipped after adding adversarial perturbations), top-1 accuracy and % increase in error rate (the
difference between error rate of adversarial and clean images) to evaluate our proposed approach.

5.2.1 Results

Table 3 shows the cross-domain black-box setting results, where attacker have no access to model
architecture, parameters, its training distribution or label space. Note that ChestX [27] does not have
much texture, an important feature to deceive ImageNet models [32], yet the transferability rate of
perturbations learned against ChexNet is much better than the Gaussian noise.

Tables 4 and 5 show the comparison of our method against different universal methods on both
naturally and adversarially trained models [34] (Inc-v3, Inc-v4 and IncRes-v2). Our attack success rate
is much higher both in white-box and black-box settings. Notably, for the case of adversarially trained
models, Gaussian smoothing on top of our approach leads to significant increase in transferability.
We provide further comparison with GAP [16] in the supplementary material. Figures 4 and 5 show
the model’s output and attention shift on example adversaries.
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Model Attack VGG-16 VGG-19 ResNet-152

V
G

G
-1

6

FFF 47.10∗ 41.98 27.82
AAA 71.59∗ 65.64 45.33
UAP 78.30∗ 73.10 63.40
Ours-Paintings 99.58∗ 98.97 47.90
Ours-Comics 99.83∗ 99.56 58.18
Ours-ImageNet 99.75∗ 99.44 52.64

V
G

G
-1

9

FFF 38.19 43.60∗ 26.34
AAA 69.45 72.84∗ 51.74
UAP 73.50 77.80∗ 58.00
Ours-Paintings 98.90 99.61∗ 40.98
Ours-Comics 99.29 99.76∗ 42.61
Ours-ImageNet 99.19 99.80∗ 53.02

R
es

N
et

-1
52

FFF 19.23 17.15 29.78∗
AAA 47.21 48.78 60.72∗
UAP 47.00 45.5 84.0∗
Ours-Paintings 86.95 85.88 98.03∗
Ours-Comics 88.94 88.84 94.18∗
Ours-ImageNet 95.40 93.26 99.02∗

Table 4: White & Black-box Setting: Fool rate (%)
of untargeted attack on ImageNet val-set. Perturba-
tion budget is l∞≤10. * indicates white-box attack.
Our attack’s transferability from ResNet-152 to VGG-
16/19 is even higher than other white-box attacks.

Model Attack Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

Inc-v3
UAP 1.00/7.82 1.80/5.60 1.88/5.60
GAP 5.48/33.3 4.14/29.4 3.76/22.5
RHP 32.5/60.8 31.6/58.7 24.6/57.0

Inc-v4 UAP 2.08/7.68 1.94/6.92 2.34/6.78
RHP 27.5/60.3 26.7/62.5 21.2/58.5

IncRes-v2 UAP 1.88/8.28 1.74/7.22 1.96/8.18
RHP 29.7/62.3 29.8/63.3 26.8/62.8

Ours-Paintings 33.92/72.46 38.94/71.4 33.24/69.66
Ours-gs-Paintings 47.78/73.06 48.18/72.68 42.86/73.3
Ours-Comics 21.06/67.5 24.1/68.72 12.82/54.72
Ours-gs-Comics 34.52/70.3 56.54/69.9 23.58/68.02

Ours-ImageNet 28.34/71.3 29.9/66.72 19.84/60.88
Ours-gs-ImageNet 41.06/71.96 42.68/71.58 37.4/72.86

Table 5: Black-box Setting: Transferability compar-
ison in terms of % increase in error rate after attack.
Results are reported on subset of ImageNet (5k) with
perturbation budget of l∞ ≤ 16/32. Our generators are
trained against naturally trained Inc-v3 only. ‘gs’ repre-
sents Gaussian smoothing applied to generator output
before projection that enhances our attack strength.

5.2.2 Comparison with State-of-the-Art

Finally, we compare our method with recently proposed instance-specific attack method [10] that
exhibits high transferability to adversarially trained models. For the very first time in literature, we
showed that a universal function like ours can attain much higher transferability rate, outperforming
the state-of-the-art instance-specific translation invariant method [10] by a large average absolute gain
of 46.6% and 86.5% (in fooling rates) on both naturally and adversarially trained models, respectively,
as reported in Table 6. The naturally trained models are Inception-v3 (Inc-v3) [24], Inception-v4
(Inc-v4), Inception Resnet v2 (IncRes-v2) [35] and Resnet v2-152 (Res-152) [36]). The adversarially
trained models are from [34].

Attack Naturally Trained Adversarially Trained
Inc-v3 Inc-v4 IncRes-v2 Res-152 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

In
c-

v3

FGSM 79.6∗ 35.9 30.6 30.2 15.6 14.7 7.0
TI-FGSM 75.5∗ 37.3 32.1 34.1 28.2 28.9 22.3

MI-FGSM 97.8∗ 47.1 46.4 38.7 20.5 17.4 9.5
TI-MI-FGSM 97.9∗ 52.4 47.9 41.1 35.8 35.1 25.8

DIM 98.3∗ 73.8 67.8 58.4 24.2 24.3 13.0
TI-DIM 98.5∗ 75.2 69.2 59.2 46.9 47.1 37.4

In
cR

es
-v

2

FGSM 44.3 36.1 64.3∗ 31.9 18.0 17.2 10.2
TI-FGSM 49.7 41.5 63.7∗ 40.1 34.6 34.5 27.8

MI-FGSM 74.8 64.8 100.0∗ 54.5 25.1 23.7 13.3
TI-MI-FGSM 76.1 69.5 100.0∗ 59.6 50.7 51.7 49.3

DIM 86.1 83.5 99.1∗ 73.5 41.2 40.0 27.9
TI-DIM 86.4 85.5 98.8∗ 76.3 61.3 60.1 59.5

R
es

-1
52

FGSM 40.1 34.0 30.3 81.3∗ 20.2 17.7 9.9
TI-FGSM 46.4 39.3 33.4 78.9∗ 34.6 34.5 27.8

MI-FGSM 54.2 48.1 44.3 97.5∗ 25.1 23.7 13.3
TI-MI-FGSM 55.6 50.9 45.1 97.4∗ 39.9 37.7 32.8

DIM 77.0 77.8 73.5 97.4∗ 40.5 36.0 24.1
TI-DIM 77.0 73.9 73.2 97.2∗ 60.3 58.8 42.8

Ours-Paintings 100.0∗ 99.7 99.8 98.9 69.3 74.6 64.8
Ours-gs-Paintings 99.9∗ 98.5 97.6 93.6 85.2 83.9 75.9
Ours-Comics 99.9∗ 99.8 99.8 98.7 39.3 46.8 23.3
Ours-gs-Comics 99.9∗ 97.0 93.4 87.7 60.3 58.8 42.8

Ours-ImageNet 99.8∗ 99.1 97.5 98.1 55.4 60.5 36.4
Ours-gs-ImageNet 98.9∗ 95.4 90.5 91.8 78.6 78.4 68.9

Table 6: White-box and
Black-box: Transferabil-
ity comparisons. Suc-
cess rate on ImageNet-
NeurIPS validation set
(1k images) is reported
by creating adversaries
within the perturbation
budget of l∞ ≤ 16,
as per the standard prac-
tice [10]. Our generators
are learned against nat-
urally trained Inception-
v3 only. ∗ indicates
white-box attack. ‘gs’
is Gaussian smoothing
applied to the generator
output before projection.
Smoothing leads to slight
decrease in transferabil-
ity on naturally trained
but shows significant in-
crease against adversari-
ally trained models.
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(c) Naturally Trained IncRes-v2
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(d) Adversarially Trained IncRes-v2

Figure 6: Effect of Gaussian kernel size and number of training epochs is shown on the transferability (in %age
fool rate) of adversarial examples. Generator is trained against Inception-v3 on Paintings, while the inference is
performed on ImageNet-NeurIPS. Firstly, as number of epochs increases, transferability against naturally trained
IncRes-v2 increases while decreases against its adversarially trained version. Secondly, as the size of Gaussian
kernel increases, transferability against naturally as well as adversarially trained IncRes-v2 decreases. Applying
kernel of size 3 leads to optimal results against adversarially trained model. Perturbation is set to l∞ ≤ 16.

5.3 Transferability: Naturally Trained vs. Adversarially Trained

Furthermore, we study the impact of training iterations and Gaussian smoothing [10] on the transfer-
ability of our generative adversarial examples. We report results using naturally and adversarially
trained IncRes-v2 model [35] as other models exhibit similar behaviour. Figure 6 displays the
transferability (in %age accuracy) as a function of the number of training epochs (a-b) and various
kernel sizes for Gaussian smoothing (c-d).

Firstly, we observe a gradual increase in the transferability of generator against the naturally trained
model as the training epochs advance. In contrast the transferability deteriorates against the adver-
sarially trained model. Therefore, when targeting naturally trained models, we train for ten epochs
on Paintings, Comics, and ChestX datasets (although we anticipate better performance for higher
epochs). When targeting adversarially trained models, we deploy an early stopping criterion to
obtain the best trained generator since the performance drops on such models as epochs are increased.
This fundamentally shows the reliance of naturally and adversarially trained models on different
set of features. Our results clearly demonstrate that the adversarial solution space is shared across
different architectures and even across distinct data domains. Since we train our generator against
naturally trained models only, therefore it converges to a solution space on which an adversarially
trained model has already been trained. As a result, our perturbations gradually become weaker
against adversarially trained models as the training progress. A visual demonstration is provided in
supplementary material.

Secondly, the application of Gaussian smoothing reveals different results on naturally trained and
adversarially trained models. After applying smoothing, adversaries become stronger for adversarially
trained models and get weaker for naturally trained models. We achieve optimal results with the
kernel size of 3 and σ = 1 for adversarially trained models and use these settings consistently in our
experiments. We apply Gaussian kernel on the unrestricted generator’s output, therefore as the kernel
size is increased, generator’s output becomes very smooth and after projection within valid l∞ range,
adversaries become weaker.

6 Conclusion

Adversarial examples have been shown to be transferable across different models trained on the same
domain. For the first time in literature, we show that the cross-domain transferable adversaries exists
that can fool the target domain networks with high success rates. We propose a novel generative
framework that learns to generate strong adversaries using a relativistic discriminator. Surprisingly,
our proposed universal adversarial function can beat the instance-specific attack methods that were
previously found to be much stronger compared to the universal perturbations. Our generative attack
model trained on Chest X-ray and Comics images, can fool VGG-16, ResNet50 and Dense-121
models with a success rate of ∼ 88% and ∼ 72%, respectively, without having any knowledge of
data distribution or label space.

9



References
[1] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. Transferability in machine learn-

ing: from phenomena to black-box attacks using adversarial samples. arXiv preprint
arXiv:1605.07277, 2016.

[2] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial
examples and black-box attacks. Proceedings of 5th International Conference on Learning
Representations, 2017.

[3] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The
space of transferable adversarial examples. arXiv preprint arXiv:1704.03453, 2017.

[4] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analysis of classifiers’ robustness to
adversarial perturbations. arXiv preprint arXiv:1502.02590, 2015.

[5] Alhussein Fawzi, Seyed-Mohsen Moosavi Dezfooli, and Pascal Frossard. Robustness of
classifiers: from adversarial to random noise. In Advances in Neural Information Processing
Systems, pages 1632–1640, 2016.

[6] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversar-
ial examples. arXiv preprint arXiv:1412.6572, 2014.

[7] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236, 2016.

[8] Seyed-Mohsen Moosavi Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple
and accurate method to fool deep neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2574–2582, 2016.

[9] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 427–436, 2015.

[10] Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Evading defenses to transferable adversarial
examples by translation-invariant attacks. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2019.

[11] Yingwei Li, Song Bai, Cihang Xie, Zhenyu Liao, Xiaohui Shen, and Alan L Yuille. Regional
homogeneity: Towards learning transferable universal adversarial perturbations against defenses.
arXiv preprint arXiv:1904.00979, 2019.

[12] Seyed-Mohsen Moosavi Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Uni-
versal adversarial perturbations. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 86–94, 2017.

[13] Konda Reddy Mopuri, Utsav Garg, and R Venkatesh Babu. Fast feature fool: A data independent
approach to universal adversarial perturbations. In Proceedings of the British Machine Vision
Conference (BMVC), 2017.

[14] Konda Reddy Mopuri, Phani Krishna Uppala, and R. Venkatesh Babu. Ask, acquire, and attack:
Data-free uap generation using class impressions. In ECCV, 2018.

[15] Shumeet Baluja and Ian Fischer. Adversarial transformation networks: Learning to generate
adversarial examples. arXiv preprint arXiv:1703.09387, 2017.

[16] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge J. Belongie. Generative adversarial
perturbations. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4422–4431, 2018.

[17] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. In International Conference
on Learning Representations (ICRL), 2014.

10

http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1704.03453
http://arxiv.org/abs/1502.02590
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1611.01236
http://arxiv.org/abs/1904.00979
http://arxiv.org/abs/1703.09387


[18] Cihang Xie, Zhishuai Zhang, Jianyu Wang, Yuyin Zhou, Zhou Ren, and Alan Loddon Yuille.
Improving transferability of adversarial examples with input diversity. CoRR, abs/1803.06978,
2018.

[19] Chaowei Xiao, Bo Li, Jun-Yan Zhu, Warren He, Mingyan Liu, and Dawn Song. Generating
adversarial examples with adversarial networks. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, pages 3905–3911. AAAI Press, 2018.

[20] Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard GAN.
In arXiv preprint arXiv:1807.00734, 2018

[21] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style transfer
and super-resolution. In ECCV, 2016.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[24] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Re-
thinking the inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[26] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2261–2269,
2017.

[27] Pranav Rajpurkar, Jeremy Irvin, Kaylie Zhu, Brandon Yang, Hershel Mehta, Tony Duan, Daisy
Ding, Aarti Bagul, Curtis P. Langlotz, Katie Shpanskaya, Matthew P. Lungren, and Andrew Y.
Ng. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. CoRR,
abs/1711.05225, 2017.

[28] Painter by Number. https://www.kaggle.com/c/painter-by-numbers/data. Kaggle, 2017.

[29] Cenk BircanoÄŸlu. https://www.kaggle.com/cenkbircanoglu/comic-books-classification. Kag-
gle, 2017.

[30] NeurIPS Attacks and Defenses. https://www.kaggle.com/c/nips-2017-defense-against-
adversarial-attack/data. Kaggle, 2017.

[31] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi
Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based
localization. 2017 IEEE International Conference on Computer Vision (ICCV), pages 618–626,
2017.

[32] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A. Wichmann,
and Wieland Brendel. Imagenet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness. In International Conference on Learning Representations,
2019.

[33] Song, Yang and Shu, Rui and Kushman, Nate and Ermon, Stefano Constructing unrestricted
adversarial examples with generative models In Advances in Neural Information Processing
Systems, 2018

[34] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. En-
semble adversarial training: Attacks and defenses. In International Conference on Learning
Representations (ICRL), 2018.

11

http://arxiv.org/abs/1807.00734
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1409.1556


[35] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4,
inception-resnet and the impact of residual connections on learning. In AAAI, volume 4, page 12,
2017.

[36] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

12



Supplementary: Cross Domain Transferability of Adversarial Perturbations

We further validate the significance of RCE compared to CE in terms of three criterion: accuracy,
logits difference and transfer to unseen classes (see Figure 1). For the test on unseen classes, we
divide ImageNet into two mutually exclusive sets (500 classes each), named IN1 and IN2. VGG16
and ResNet50 are trained on IN1 & IN2 from scratch. We also compare our method with GAP [16]
in Sec. 1 to demonstrate superiority of our approach. In Sec. 2, we visually demonstrate the effect
of training time and Gaussian kernel size of the generated adversaries. Finally, in Sec. 3, we show
adversaries produced by different generators as well as demonstrate attention shift on adversarial
examples.
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Figure 1: (a) shows Top-5 accuracy of adversaries (lower is better), (b) shows normalized l2 difference b/w
logits of adversarial and benign examples (higher is better) while (c) shows transferability to unseen classes. In
each caseRCE performs significantly better than CE . ImageNet val. 50k images are used in (a) and (b) while
25k validation images of IN1 and IN2 are used in (c) and (d).

1 Comparison with GAP [16]

Perturbation Attack VGG-16 VGG-19 Inception-v3
Fool Rate (↑) Top-1 (↓) Fool Rate (↑) Top-1 (↓) Fool Rate (↑) Top-1 (↓)

l∞ ≤ 7

GAP 66.9 30.0 68.4 28.8 85.3 13.7
Ours-Paintings 95.31 4.29 96.84 2.94 97.95 1.86
Ours-Comics 99.15 0.97 98.58 1.33 98.90 1.0
Ours-ImageNet 98.57 1.32 98.71 1.24 91.03 8.4

l∞ ≤ 10

GAP 80.80 17.7 84.10 14.6 98.3 1.7
Ours-Paintings 99.58 0.4 99.61 0.38 99.65 0.33
Ours-Comics 99.83 0.16 99.76 0.22 99.72 0.26
Ours-ImageNet 99.75 0.24 99.80 0.21 99.05 0.89

l∞ ≤ 13

GAP 88.5 10.6 90.7 8.6 99.5 0.5
Ours-Paintings 99.86 0.16 99.83 0.16 99.8 0.18
Ours-Comics 99.88 0.12 99.86 0.13 99.83 0.17
Ours-ImageNet 99.87 0.13 99.86 0.15 99.67 0.13

Table 1: Comparison between GAP [16] and our method. Untargeted attack success rate (%) in terms
of fooling rate (higher is better) and Top-1 accuracy (lower is better) is reported on 50k validation
images. Each attack is carried out in a white-box setting.

2 Effect of Training Time and Gaussian Kernel Size

Figures 2 and 3 show the evolution of generative adversaries as the number of epochs increases. At
initial epochs, adversaries are more smoother and more transferable against adversarially trained
models. On the other hand, as training progress, generator converges to a solution with locally strong
patterns that are more transferable to naturally trained models.

Figures 4 and 5 show the effect of Gaussian smoothing. As the kernel size increases, transferability
of adversaries decreases.
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Figure 2: Evolution of adversaries produced by generator as the training progress. Adversaries found
at initial training stages e.g., at epoch #1 are highly transferable against adversarially trained models
while adversaries found at later training stage e.g., at epoch #10 are highly transferable against
naturally trained models. Generator is trained against Inc-v3 on Paintings dataset. First row shows
unrestricted adversaries while second row shows adversaries after valid projection (l∞ ≤ 10).

Epoch: 1 Epoch: 3 Epoch: 6 Epoch: 8 Epoch: 10

Figure 3: Evolution of adversaries produced by generator as the training progress. Adversaries found
at initial training stage e.g., at epoch #1 are highly transferable against adversarially trained models
while adversaries found at later training stage e.g., at epoch #10 are highly transferable against
naturally trained models. Generator is trained against Inc-v3 on Paintings dataset. First row shows
unrestricted adversaries while second row shows adversaries after valid projection (l∞ ≤ 10).

3 Examples

Figure 6 demonstrates the attention shift on generative adversarial examples produced by our method.
Figures 7, 8, 9 and 10 show examples of different clean images and their corresponding adversaries
produced by different generators.
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3x3 5x5 7x7 9x9 11x11

Figure 4: Evolution of adversaries produced by generator as the size of Gaussian kernel increases.
Adversaries start to lose their effect as the kernel size increase. The optimal results against adversari-
ally trained models are found at kernel size of 3. First and second rows show unrestricted adversaries
before and after smoothing, while third row shows adversaries after valid projection (l∞ ≤ 10).

3x3 5x5 7x7 9x9 11x11

Figure 5: Evolution of adversaries produced by generator as the size of Gaussian kernel increases.
Adversaries start to lose their effect as the kernel size increase. The optimal results against adversari-
ally trained models are found at kernel size of 3. First and second rows show unrestricted adversaries
before and after smoothing, while third row shows adversaries after valid projection (l∞ ≤ 10).
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Figure 6: Illustration of attention shift for ResNet-152. We use [31] to visualize attention maps
of clean (1st row) and adversarial (2nd row) images. Adversarial images are obtained by training
generator against ResNet-152 on Paintings dataset.
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Original Images

Target model: VGG-16, Distribution: Paintings, Fooling rate: 99.58%

Target model: VGG-16, Distribution: Comics, Fooling rate: 99.8%

Target model: VGG-16, Distribution: ImageNet, Fooling rate: 99.7%

Figure 7: Untargeted adversaries produced by generator (before and after projection) trained against
VGG-16 on different distributions (Paintings, Comics and ImageNet). Perturbation budget is set to
l∞ ≤ 10 and fooling rate is reported on ImageNet validation set.
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Original Images

Target model: VGG-19, Distribution: Paintings, Fooling rate: 99.6%

Target model: VGG-19, Distribution: Comics, Fooling rate: 99.76%

Target model: VGG-19, Distribution: ImageNet, Fooling rate: 99.8%

Figure 8: Untargeted adversaries produced by generator (before and after projection) trained against
VGG-19 on different distributions (Paintings, Comics and ImageNet). Perturbation budget is set to
l∞ ≤ 10 and fooling rate is reported on ImageNet validation set.
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Original Images

Target model: Inc-v3, Distribution: Paintings, Fooling rate: 99.65%

Target model: Inc-v3, Distribution: Comics, Fooling rate: 99.72%

Target model: Inc-v3, Distribution: ImageNet, Fooling rate: 99.04%

Figure 9: Untargeted adversaries produced by generator (before and after projection) trained against
Inception-v3 on different distributions (Paintings, Comics and ImageNet). Perturbation budget is set
to l∞ ≤ 10 and fooling rate is reported on ImageNet validation set.
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Original Images

Target model: ResNet-152, Distribution: Paintings, Fooling rate: 98.0%

Target model: ResNet-152, Distribution: Comics, Fooling rate: 94.18%

Target model: ResNet-152, Distribution: ImageNet, Fooling rate: 99.0%

Figure 10: Untargeted adversaries produced by generator (before and after projection) trained against
ResNet-152 on different distributions (Paintings, Comics and ImageNet). Perturbation budget is set
to l∞ ≤ 10 and fooling rate is reported on ImageNet validation set.
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